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Abstract

In this paper we propose a numerical method for computing minimal surfaces with fixed boundaries. The level set

method is used to evolve a codimension-1 surface with fixed codimension-2 boundary in Rn under mean curvature flow.

For n = 3 the problem has been approached in D.L. Chopp, 1993 and L.-T. Cheng [D.L. Chopp, Computing minimal

surfaces via level set curvature flow, J. Comput. Phys. 106(1) (1993) 77–91 and L.-T. Cheng, The level set method

applied to geometrically based motion, materials science, and image processing, UCLA CAM Report, 00-20] using

the level set method, but with a more complicated boundary conditions. The method we present can be generalized

straightforward to arbitrary dimension, and the framework in which it is presented is dimension independent. Examples

are shown for n = 2, 3, 4.

� 2005 Elsevier Inc. All rights reserved.
1. Introduction

Given a fixed codimension-2 boundary C in Rn, we would like to find a codimension-1 surface S of min-

imal surface area that takes C as its boundary. If we let S be the set {x|u(x) = 0} for a function u : Rn ! R,

then the surface area to be minimized can be written asZ
0021-9
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E-m
A ¼
Rn
jrujdðuÞdx: ð1Þ
Applying the method of gradient descent to (1)we arrive at the evolution PDE
ut ¼ dðuÞr � ru
jruj
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: ð2Þ
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Within the level set framework it is advantageous to avoid the d function and so the related PDE:
ut ¼ jrujr � ru
jruj

� �
; ð3Þ
that also evolves u towards a minimizer of (1), is studied here. Evolution under (3) is known as mean cur-

vature flow. The basic idea behind our technique is to initialize a surface that passes through C and then

evolve it to steady state using (3), while forcing it at all times to span C.
The applications of minimal surfaces span a wide variety of sciences. The surfaces of chemical structures

have been studied [17,4]. The interface between crystals and organic matter in the skeletal element of sea

urchins can be described as a minimal surface [21]. Minimal surfaces are found in the ternary mixtures

of oil, water and surfactant [29]. They have also been studied in condensed matter physics [19]. Overviews

of the areas of physics, chemistry and biology in which minimal surfaces play a role can be found in [1,16].

The study and computation of minimal surfaces has a long history. Classical theory can be found in

[8,22]. Some of the first numerical approximations can be found in [9]. There has been much study in

the dimension n = 3, and there are many finite element approaches [14,12]. In [25] minimal surfaces were

approximated by the level sets of functions of least gradient. Mean curvature flow was used in [10] to com-
pute stable minimal surfaces using finite elements on surfaces. A network of marker particles is used in the

works [2,7,30], and non-parametric representations were used in [15,13]. See [11] for a more detailed listing.

Here we have chosen to use a level set method because of it flexibility when handling topological

changes, especially in higher dimensions. While it requires an extra dimension of storage to track the func-

tion away from the level set of interest, this extra storage can usually be reduced by using locally adaptive

methods with higher resolution near the interface [26]. Level set methods for computing minimal surfaces

were also employed in [6,5].

A method proposed in [6] uses a similar level set framework as our method for n = 3, but requires com-
plicated boundary conditions for u near C. These boundary conditions require the user to find the inter-

section of various lines and planes with C. Thus, an analytic representation of gamma must be given or

constructed to find these intersections. Also, the boundary may be unable to avoid an inconsistent construc-

tion. The generalization of that method to higher dimensions is also not available. The method in [5] a

modified energy is minimized which fixes the solution in a band near the codimension-2 boundary of the

minimal surface.

Our method is similar to the method in [6,5] away from C, using finite difference methods for the mean

curvature motion equation [23,24]. However, near C we use a different technique. To form the spatial deriv-
atives on the right side of (3) we use a radial basis function (RBF) reconstruction of u with stencil points

that lie exactly on C. Then this reconstruction is differentiated to find the needed spatial derivatives. There-

fore no analytic construction of C is needed, and the user only needs to know data points on the minimal

surface boundary C. Because the RBF reconstruction is dimension independent, the method easily gener-

alizes to arbitrary dimension and we have obtained results in R4.

The outline of the paper is as follows: we begin with the description of the evolution procedure away

from C. Secondly, we discuss the RBF reconstruction and the procedure for evolution near C. Finally,
numerical examples in Rn, n = 2, 3, 4 are shown.
2. Evolution procedure away from C

2.1. Grid construction

First, we describe the procedure for constructing the computational domain. Given a fixed, compact,

codimension-2 boundary in Rn we find an n-dimensional cube, X � C, such that ||C � oX|| > �, where � is
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the size of a few (3 or 4) grid cells. This buffering is to ensure that the stencils used in calculating the terms in

(3) do not cross oX. Given X we discretize it using a uniform grid with distance between nodes = dx, and

call this discretized set X.

2.2. Evolution of mean curvature flow

We treat the evolution of (3) using the method of lines. The time derivatives are calculated using TVD

Runge–Kutta schemes [24]. The CFL condition used is
dt
2

dx2
þ 2

dy2
þ 2

dz2

� �
6 1: ð4Þ
The spatial derivatives are calculated using central finite differences. The curvature term can be written as
k �
Xn

i¼1

uxixi

Xn

j¼1
j 6¼i
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xj
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775 jruj3: ð5Þ
Second order finite differencing applied to (5) at a point x0 results in a stencil S0 of size 3
n, which consists

of all the points {yj||y � x0||1 6 dx}. Finite differencing is also applied to the term |$u|. Also, |$u| is
regularized by adding a small, O(dx2), term to it, and we minimize the magnitude of the allowable radius

of curvature on the grid to be 1/|k| 6 dx.
When we say a point x0 is ‘‘away from C,’’ we mean:

1. There are no points y 2 C that lie in the cube {yj||y � x0||1 < dx}, so that the convex hull of the stencil

used in advancing (3) does not cross C.
2. That all points of S0 are part of X. We say this here because in the next section we will explain how

certain points of X are removed from the computational domain if they are too close to C.

We use Neumann BCs ou/on = 0 on oX. For some examples these boundary conditions are necessary as
they impose symmetry across the boundary, but for some problems they are arbitrary as the region of inter-

est lies completely within the domain.

2.3. Reinitialization

Another procedure that must be applied at every timestep is reinitialization of u to a distance function.

The reason for these repeated applications is to avoid the bunching of levelsets that can occur near C, as
noted in [6]. Thus reinitialization keeps the level sets well spaced and avoids problems in evolution that
can occur when |$/| is too large or small. This is done by evolving the PDE
ut þ sðuÞðjruj � 1Þ ¼ 0; ð6Þ

where s is a smoothed version of the signum function. As this is done every timestep we only compute a few

iterations of (6). See [24] for details on this computation on uniform grids.
3. Evolution procedure near C

In this section we describe the evolution of (3), (6) on the set of all points that are not ‘‘away from C.’’
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3.1. Grid adjustment

Because of the possibility that a point x0 2 X could be very close to C we remove the set of points

B ” {xj||x � C||2 < d} from X, where d < dx. We use d = 0.5dx in practice. This is done so that CFL condi-

tion is not over restrictive. In general if the smallest radius of curvature that can be resolved on the grid is
rmin, then we can expect that we need a CFL condition of dt 6 O(rmindx). So if we allow points on C that

are too close, O(dx2), to points on the uniform grid, then we could end up in situations where rmin � dx2,

yielding a CFL condition of dt 6 O(dx3), which is too restrictive to be practical. Similarly, we do not overs-

ample C so that points on C lie too close together. Thus our final computational grid consists of

ðX n BÞ [ C.

3.2. Evolution of mean curvature flow

Firstly, we note that as C is part of the minimal surface we set u(x 2 C,t) = 0 "t.
To evolve (3) at a point x0 we form a local RBF reconstruction of u, which we call U, and then differ-

entiate U to find the spatial derivatives needed in (5) (which include the partial derivatives needed in |$u|).
This reconstruction is done using a 3n point stencil, S0, found using the method of rays described in [3], with

the rays given by rk = x0 + vks, s P 0, where vk are taken to be all points on the unit cubic lattice Zn with

||vk||1 = 1. While the size of this stencil grows exponentially large for higher dimensional problems, there is

research being done into fast solvers for the interpolation equations. Also, in much higher dimensions the

distance from the center point to the farthest vertices of the unit cube is Oð ffiffiffi
n

p Þ, so perhaps stencils with
differently shaped convex hulls would be more appropriate, such as those more closely approximating a

hypersphere.

The accuracy of the RBF interpolation is usually inversely proportional to the condition number of the

interpolation matrix defining the interpolation problem
UðyiÞ ¼ /ðyiÞ; i ¼ 1; . . . ;M ; ð7Þ

where
UðxÞ :¼
XM
j¼1

cjwðx� yjÞ; ð8Þ
where w is a radial basis function (RBF), e.g., wðrÞ ¼ e�ar2 , {yi} are the nodes in the M point interpolation
stencil. For example as a ! 0 when wðrÞ ¼ e�ar2 , the reconstruction U converges to standard polynomial

interpolation. Also, RBF interpolations are optimal within their native spaces [18], which may impose more

smoothness than polynomial reconstructions exhibit. The speed of the algorithm will mainly be determined

by the speed of the solves of these interpolation equations. However, if storage is not a concern then the

coefficients of the derivative terms can be stored initially so that the matrix inversions only need to be done

once at the start. This saves considerable time at the expense of storage, assuming that data access is

relatively fast.

We will briefly describe the method again here.
Assume we have defined N = 3n rays, rk = x0 + vks, s > 0, || vk||2 = 1, emanating from x0. We then find the

neighbor xj of x0 that maximizes V � f ðx0; xj; vk;X;NÞ.
The choice of the stencil preference function f has some flexibility. The general properties it should have

are that it should be a non-increasing function of
a ¼ cos�1 xj � x0
jjxj � x0jj2

� vk
� �

;
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and b = ||xj � x0|| (this norm can be chosen by the user). Also, f will depend on the local density of points,

q0, near x0.
For example, in 2 dimensions if we calculate q0 and we have chosen N, then we can define f = g where
g �
cos a; if kxj � x0k2 <

ffiffiffiffiffi
N
pq0

q
;

�1; otherwise:

(

Here we have derived the radius of the support of f, R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N=ðpq0Þ

p
, by equating q = N/(pR2). Thus we

are assuming that the points in the ball ||xj � x0||2 < R have approximate density q0. To calculate q0 we can
use the number points in the neighboring coarse grid cells of x0 divided by the total size of those cells. Other

examples of f are gp for p > 0, or f = �b, or combinations of these functions such as g/b or g � b. In practice

we use f = g � b/C, where C is a scaling constant depending on the mesh size.

Some examples of choices of f are shown in Figs. 1–3. For these examples vk = (0,1). The function is
shown on the left and its contour plot shown on the right in each figure for 0 6 a 6 p/2. The scale for

the x,y axes has been multiplied by 50. Fig. 4 shows an example in 2d of how a single stencil node would

be chosen. The contour lines of f are shown, along with v0, x0 = (1,1), and candidate stencil nodes xj, j = 1:4.

In this example the node that maximizes f is x1.

Once S0 is found we form our reconstruction U following the RBF parameter optimization procedure

outlined in [3]. Next, approximations to the partial derivatives in (5) are constructed by taking second order

central finite differences of U on a uniform grid that has minimal distance between nodes = h. In practice we

use h = dx or h = 0.5dx. This adds a small amount of numerical diffusion to the derivatives that is not pres-
ent if we were to differentiate U exactly.

After the spatial derivatives are calculated, TVD Runge–Kutta time advancement is used to advance the

solution.

3.3. Reinitialization

As is done on the points of X away from C, we evolve (6) for a few iterations after each timestep that (3)

is advanced. We use the same technique as is done in Section 3.2 to construct the stencil S0, but then instead
of using central differencing to approximate derivatives of U we use one sided upwind finite differencing

where it is needed in the Godunov solver of (6). This means that when the numerical Hamiltonian that

is used to approximate |$u| calls for Dþ
xi
u, D�

xi
u we will use (U(x0 + eih) � U(x0))/h, (U(x0) � U(x0 � eih))/

h, respectively.
Fig. 1. f = cos a.



Fig. 4. Example of stencil choice, f ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ðy=2Þ2

q
.

Fig. 2. f ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
.

Fig. 3. f ¼ cos a�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
.
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4. Numerical examples

In this section we show numerical results.

Firstly, we discuss an important issue of initialization of /. One way this could be done is described in

[5]. This involves taking a large sphere that encloses C. The sphere will eventually shrink until its boundary
touches C where is will stay fixed. Instead, we find an arbitrary surface passing through (or near) C and use

this as the set {/ = 0} and then reinitialize globally to construct / defined on all of the domain. For the

examples we find initial surfaces that extend out of the boundary oX, so that for all time these surfaces will

remain extended through the boundary (because of the Neumann BCs). Thus they will not interfere with

the motion of the portion of the surface that is being studied, which usually lies within the convex hull

of C.
In 2d with C being a set of 2 points the minimal surface will be a line, as in Fig. 5. We use a uniform cell

width of dx = 0.04.
In 3d an example where we can compare our solution with an analytic result is when C is given by two

circles defined by x2 + y2 = 0.52, z = ±0.277259. This example was also computed in [6] (see Fig. 6). The

initial condition is a cylinder x2 + y2 = 0.52. In this example we use the symmetry of the solution to reduce

the computational domain to the space x,y 2 [0,0.7], z 2 [0,0.35], where we use a uniform cell width of

dx = 0.035. The minimal surface boundary C is thus a quarter circle which is discretized using 1000 equi-

spaced points that lie in the computational domain. However, after the stencils are chosen only 191 of these

points are used. The number of points on C that are used is largely grid dependent. If C were shifted so that

it was more closely aligned with a specific line or plane of uniform grid points then the number of points
used would be greater.

The exact solution is a catenoid with radius r(z) = 0.4cosh(z/0.4), whose radius at z = 0 is 0.4. In Table 1

we show a convergence estimate based on nested grid refinement. Here the error is measured along the line

x = y, at z = 0.

Note that because of the symmetric nature of the Neumann BCs imposed we are also computing the

solution of a catenoid where C is given by 2 circles defined by x2 + y2 = 0.52, z = 0.35 ± (0.35 � 0.277259).

For the 3d and 4d examples, the solutions are interpolated onto a uniform grid at the points that have

been removed during computation because of their proximity to C.
Fig. 5. Minimal surface evolution in 2d with 2 point boundary C denoted by the * points. At t = 0, 0.16, 0.8.

Fig. 6. Minimal surface evolution in 3d with 2 circle boundary C denoted by the dark line. At t = 0, 0.123, 0.367.
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Another 3d example is found by letting C lie on Enneper�s minimal surface. For this example we use the

parameterization of Enneper�s surface
Table

Conve

dx

0.035

0.0175

Fi

Fi
fx; y; zg ¼ r cos h� 1

3
r3 cosð3hÞ;�r sin h� 1

3
r3 sinð3hÞ; r2 cosð2hÞ

� �
:

For C we take r = 1, h 2 [�p,p) for 2000 equispaced points in h. The resulting curve resembles the stitching

pattern on a baseball. After the stencils are chosen 1618 of these points are used. The computational

domain is [�1.4,1.4]3 and the uniform space step size is 2.8/50. The initial surface has the same topology
as Enneper�s surface, and consists of piecewise planar and cylindrical surfaces that have Gaussian curva-

ture = 0 almost everywhere.

We show two different views of the evolution in Figs. 7, 8 and a comparison with the exact solution in

Fig. 9. Only the surface inside C should be compared with the exact solution.

In 4d we compute a generalized catenoid solution where C is defined as 2 spheres given by

x2 + y2 + z2 = 0.52, w = ± 0.2. The initial condition is a hypercylinder x2 + y2 + z2 = 0.52. In this example

we use the symmetry of the solution to reduce the computational domain to the space x,y,z 2 [0,0.6],

w 2 [0,0.3], where we use a uniform cell width of dx = 1/30. The minimal surface boundary C is thus an
eighth of a sphere that is discretized using 41,692 approximately equispaced points that lie in the compu-

tational domain. However, after the stencils are chosen only 8051 of these points are used (see Figs. 10 and

11).

Note that because of the symmetric nature of the Neumann BCs imposed we are also computing the

solution of a catenoid where C is given by 2 spheres defined by x2 + y2 + z2 = 0.52, w = 0.3 ± 0.1.
1

rgence rate estimate

Error Rate

9.504 · 10�3

2.162 · 10�3 2.14

g. 7. Minimal surface evolution in 3d with Enneper surface boundary C denoted by the dark line. At t = 0, 0.063, 0.439.

g. 8. Minimal surface evolution in 3d with Enneper surface boundary C denoted by the dark line. At t = 0, 0.063, 0.439.



Fig. 9. Minimal surface evolution in 3d with Enneper surface boundary C denoted by the dark line. Left: exact solution. Right:

computed solution at t = 0.439.

Fig. 11. Minimal surface evolution in 4d with 2 sphere boundary C denoted by the dark line. Slices taken at x ¼ 0:4�6, at t = 0, 0.034,

0.411.

Fig. 10. Minimal surface evolution in 4d with 2 sphere boundary C denoted by the dark line. Slices taken at x = 0, at t = 0, 0.034,

0.411.
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We show 3d slices of the solution for fixed values of x at various times. Slices taken for fixed y, z values

look identical to those shown, and the slices for fixed w values look like spheres.

Note how in the slice taken when x ¼ 0:4�6 that the surface remains a catenoid when |w| > 0.2, but has

changed topology in the region |w| < 0.2.
5. Conclusion

In this paper we introduce a numerical method for computing minimal surfaces in arbitrary dimension

that have codimension-2 boundary, C, by evolving an initial codimension-1 surface by mean curvature flow.

The method uses existing finite differences techniques away from C, and a new evolution procedure using

radial basis functions near C. The framework is described in a way that can be generalized to any dimen-
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sion, and computed examples are shown in 2, 3 and 4 dimensions. While uniform grids are used in this

paper, it would be advantageous to use an adaptive grid such as those described in [27,20], for higher

dimensional problems. The method presented here would still be applicable in these contexts, as it only

modifies the underlying evolution scheme near C.
Future work can include the study of unstable minimal surfaces. Surfaces with generalized triple points

can also be studied, perhaps by the use of multiple level set functions [28]. As computer memory and speed

increase higher dimensional problems will also be approached. The method presented can also be applied to

other non-linear evolutions with irregular fixed boundaries in arbitrary codimension.
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